This work reports a de novo synthesis of novel bifunctional conjugated microporous polymers (CMPs) exhibiting a synergistic-effect involved coordination behavior to uranium.It is highlighted that the synthetic strategy enables the engineering of the coordination environment within amidoxime functionalized CMP frameworks by specifically introducing ortho-substituted amino functionalities,enhancing the affinity to uranyl ions via forming synergistic complexes.The CMPs exhibit high Brunauer-Emmett-Teller (BET)surface area,well-developed three-dimensional (3D) networks with hierarchical porosity,and favorable chemical and thermal stability because of the covalently cross-linked structure.Compared with the amino-free counterparts,the adsorption capacity of bifunctional CMPs was increased by almost 70%,from 105 to 174 mg/g,indicating evidently enhanced binding ability to uranium.Moreover,new insights into coordination mechanism were obtained by in-depth X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculation,suggesting a dominant role of the oxime ligands forming a 1:1 metal ions/ligands(M/L) coordination model with uranyl ions while demonstrating the synergistic engagement of the amino functionalities via direct binding to uranium center and hydrogen-bonding involved secondary-sphere interaction.This work sheds light on the underlying principles of ortho-substituted functionalities directed synergistic effect to promote the coordination of amidoxime with uranyl ions.And the synthetic strategy established here would enable the task-specific development of more novel CMP-based functional materials for broadened applications.