基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过肺部CT影像进行肺结节检测是肺癌早期筛查的重要手段,而候选结节的假阳性筛查是结节检测的关键部分.传统的结节检测方法主要通过简单的先验知识再利用低级的描述特征进行辅助检测,存在着假阳性高、敏感度低的问题.在深度学习中,卷积神经网络可以在通用的学习过程中提取图像的特征.提出了一种基于密集神经网络的结节假阳性筛查模型:首先对CT图像进行阈值分割提取肺区再截取以结节为中心的图像,送入网络模型进行分类训率;在网络模型中,通过稠密连接强化特征利用、扩大特征空间,采用瓶颈层降低参数冗余.模型在公开的LIDC数据集上取得了95.82%的准确率,ROC曲线下面积达到0.987,CPM为0.772.实验结果表明了该模型的有效性,其性能优于相关文献的方法,适用于肺结节的假阳性降低.
推荐文章
基于改进自生成神经网络的孤立性肺结节分类
PE T-C T 影像
孤立性肺结节
自生成神经网络
分类器
距离测度
基于改进的VGG-16卷积神经网络的肺结节检测
肺结节
VGG-16
极限学习机
卷积神经网络
基于卷积神经网络的肺结节分类算法
肺结节
分类算法
图像分割
卷积神经网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密集神经网络的肺结节假阳性筛查模型
来源期刊 计算机技术与发展 学科
关键词 肺结节 假阳性筛查 密集神经网络 稠密连接 深度学习
年,卷(期) 2021,(4) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 147-152
页数 6页 分类号 TP311
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.04.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (2)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(11)
  • 参考文献(2)
  • 二级参考文献(9)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肺结节
假阳性筛查
密集神经网络
稠密连接
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导