基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的推荐算法由于存在数据稀疏性和冷启动问题,导致在线学习平台在资源推荐上不能满足学习用户的个性化需求.为此,构建一个基于协同过滤算法的学习资源推荐模型,在推荐过程中融入学习用户的属性特征信息,进行学习资源个性化推荐.首先,在给出学习资源推荐模型的基础上分别构建了学习用户模型和资源模型;其次,在构建学习用户-学习资源评分矩阵的基础上采用基于修正的余弦相似度的改进算法结合学习用户的行为信息进行相似度计算和预测评分;最后,将学习用户模型和学习资源模型的特征信息融入推荐过程并实现学习资源的个性化推荐.通过对模型测试和实验的MAE值比对分析,基于协同过滤算法的学习资源推荐模型在推荐精度和个性化方面均优于传统的推荐算法模型.
推荐文章
基于协同过滤算法的旅游景点推荐模型研究
协同滤波
DOM
用户相似度
近邻集合
旅游景点
推荐模型
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于协同过滤算法的学习资源推荐模型研究
来源期刊 计算机技术与发展 学科
关键词 协同过滤 学习资源 推荐模型 在线学习 行为信息
年,卷(期) 2021,(9) 所属期刊栏目 大数据分析与挖掘
研究方向 页码范围 31-35
页数 5页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.09.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (77)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(9)
  • 参考文献(5)
  • 二级参考文献(4)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
学习资源
推荐模型
在线学习
行为信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导