基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对不具有时间记忆能力的机器学习方法融合风电机组数据采集与监控系统(SCADA)的时序数据而导致风电齿轮箱状态预测精度不高的问题,提出基于长短时记忆(LSTM)网络融合SCADA数据的风电齿轮箱状态预测模型.选择能表征风电齿轮箱运行状态的某个监测量作为模型的输出量,基于灰色关联度选择与该监测量关联密切的SCADA参数作为预测模型的输入量;使用正常状态下的SCADA数据训练LSTM预测模型,得出预测值和残差,通过3σ准则计算出上下预警阈值,用于风电齿轮箱状态监测和故障预警.某风电场风电齿轮箱的SCADA数据验证表明所提出的方法能有效预警风电齿轮箱故障.
推荐文章
基于长短时记忆网络的仿真系统数据故障诊断方法
故障诊断
长短时网络
神经网络
数据分析
基于ARM的风电齿轮箱振动监测系统设计
ARM
风电
齿轮箱
振动
监测
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
融合宽残差和长短时记忆网络的动态手势识别研究
手势识别
3D卷积神经网络
长短时记忆网络
宽残差网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于长短时记忆网络融合SCADA数据的风电齿轮箱状态监测
来源期刊 太阳能学报 学科
关键词 风电机组 状态监测 长短时记忆网络 齿轮箱 SCADA
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 235-239
页数 5页 分类号 TM315
字数 语种 中文
DOI 10.19912/j.0254-0096.tynxb.2018-0802
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (61)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电机组
状态监测
长短时记忆网络
齿轮箱
SCADA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导