基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对眼底血管图像存在血管细小、视网膜病变而导致分割精度低的问题,提出了一种引入残差块、级联空洞卷积、嵌入注意力机制的U-Net视网膜血管图像分割模型.首先采用提高视网膜图像分辨率,以点噪声为中心、512为边长裁剪来扩增数据集,然后在U-Net模型中引入残差块,增加像素特征的利用率和避免深层网络的退化;并将U-Net网络的底部替换为级联空洞卷积模块,扩大特征图的感受野,提取更丰富的像素特征;最后在解码器中嵌入注意力机制,加重目标特征的权重,减缓无用信息的干扰.基于CHASE数据集的实验结果表明,所提模型的准确率达到了98.2%,灵敏度达到了81.72%,特异值达到了98.90%,与其他多尺度神经网络方法相比体现了更好的分割效果,充分验证了提出改进的U-Net网络模型能有效提高血管分割精度、辅助确诊血管病变.
推荐文章
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
基于Group-Depth U-Net的电子显微图像中神经元结构分割
深层卷积神经网络
分组卷积网络
神经元结构分割
电子显微成像
Group-DepthU-Net
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进U-Net网络的眼底血管图像分割研究
来源期刊 电子测量与仪器学报 学科 工学
关键词 血管图像分割 U-Net网络 残差块 注意力机制 空洞卷积
年,卷(期) 2021,(10) 所属期刊栏目 学术论文|PAPERS
研究方向 页码范围 202-208
页数 7页 分类号 TP391|TN911.7
字数 语种 中文
DOI 10.13382/j.jemi.B2003781
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
血管图像分割
U-Net网络
残差块
注意力机制
空洞卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导