基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为便于选取合适的切削参数,以满足期望的加工表面质量要求,提出一种最小二乘支持向量机(LSSVM)和粒子群优化(PSO)相结合的表面粗糙度预测模型.以预测精度和收敛速度为指标,对比PSO-LSSVM模型与支持向量机、人工神经网络和遗传算法优化BP神经网络模型的优劣.结果表明:PSO-LSSVM模型具有较高的预测精度和较快的收敛速度.基于MATLAB GUI搭建了表面粗糙度预测与参数优化应用系统.该系统具有较好的实用性,可实现简单、快速预测表面粗糙度,帮助决策人员灵活选取切削参数.
推荐文章
基于聚类PSO-LSSVM模型的PAD维度预测
情感维度PAD
最小二乘支持向量机
粒子群优化算法
情感聚类分析
基于混合核函数PSO-LSSVM的边坡变形预测
边坡
边坡变形预测
最小二乘支持向量机
粒子群优化
混合核
考虑灰色关联权重的PSO-LSSVM输电线路覆冰厚度预测模型
灰色关联权重
粒子群优化算法
最小二乘支持向量机
输电线路
覆冰厚度
基于聚类PSO-LSSVM模型的PAD维度预测
情感维度PAD
最小二乘支持向量机
粒子群优化算法
情感聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-LSSVM算法的表面粗糙度预测模型与应用
来源期刊 机床与液压 学科
关键词 表面粗糙度预测 最小二乘支持向量机 粒子群优化 应用系统
年,卷(期) 2021,(6) 所属期刊栏目 试验与研究|TEST & RESEARCH
研究方向 页码范围 47-50,59
页数 5页 分类号 TH16
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.06.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
表面粗糙度预测
最小二乘支持向量机
粒子群优化
应用系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
论文1v1指导