基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度卷积神经网络中经典的AlexNet网络模型中激活函数ReLU在网络模型训练时易产生神经元"死亡"和均值偏移的问题进行研究以及改进,通过结合反正切函数和对数函数的优势,在传统激活函数ReLU基础上提出了一种新的激活函数sArcReLU,并在后续训练过程中进一步调参.并将文中改进后的激活函数sArcReLU用于AlexNet网络模型训练,将使用新激活函数训练的深度卷积神经网络模型应用于公开数据集进行分类实验以验证其性能.实验结果表明:利用sArcReLU激活函数训练的深度卷积神经网络比利用ReLU以及ArcReLU训练的网络模型在分类精度上分别提升了1.7%和2.4%,证明了改进方式经过大量数据充分微调的深度卷积神经网络可有效地提高图像分类精度,该方法同时也提升了深度卷积神经网络的实际应用价值.
推荐文章
基于改进sigmoid激活函数的深度神经网络训练算法研究
深度神经网络
残差衰减
sigmoid激活函数
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度卷积神经网络中激活函数的研究
来源期刊 计算机技术与发展 学科
关键词 深度卷积神经网络 激活函数 反正切函数 对数函数 图像分类
年,卷(期) 2021,(9) 所属期刊栏目 图形与图像
研究方向 页码范围 61-66
页数 6页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.09.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (150)
共引文献  (646)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1933(1)
  • 参考文献(0)
  • 二级参考文献(1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(11)
  • 参考文献(1)
  • 二级参考文献(10)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(14)
  • 参考文献(0)
  • 二级参考文献(14)
2016(20)
  • 参考文献(1)
  • 二级参考文献(19)
2017(16)
  • 参考文献(2)
  • 二级参考文献(14)
2018(11)
  • 参考文献(2)
  • 二级参考文献(9)
2019(21)
  • 参考文献(2)
  • 二级参考文献(19)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度卷积神经网络
激活函数
反正切函数
对数函数
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导