基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
热轧钢条的表面质量对成品至关重要,因此必须要严格控制热轧钢条的表面出现的缺陷.针对当前YOLOv4算法检测精度不高、对小范围信息表现较差等问题,提出一种改进YOLOv4自动检测方法.首先,将YOLOv4中特征提取网络CSPDarknet53换为轻量级深层神经网络MobileNetv3来提高检测速度,并且加强对检测目标特征提取以及减少梯度消失问题.其次,采用K-Means聚类生成适合本实验的先验框,有效提高学习效率,加快收敛速度.最后,对置信度损失进行重新定义,提出一种能够适应多尺度的损失函数,来解决因正负样本不平衡而导致检测效果差的问题.实验结果表明,该方法较原YOLOv4模型在热轧钢条的表面缺陷检测上的均值平均精度值提高约7.94%,速度提升约4.52 f/s,在保证检测速度的基础上有效提高了精确度.
推荐文章
基于轻量级卷积神经网络的实时缺陷检测方法研究
卷积神经网络
深度可分离卷积
通道混洗
缺陷检测
基于卷积神经网络的管道表面缺陷识别研究
缺陷识别
管道表面缺陷
机器视觉
卷积神经网络
缺陷分类
GoogleNet构造优化
基于卷积神经网络的钣金件表面缺陷分类识别方法
卷积神经网络
缺陷检测
缺陷分割提取
窗口滑移检测
基于改进的卷积神经网络的道路井盖缺陷检测研究
井盖缺陷
卷积神经网络
激活函数
神经元
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的热轧钢条表面实时缺陷检测
来源期刊 仪器仪表学报 学科 工学
关键词 缺陷检测 YOLOv4 MobileNetv3 K-Means聚类
年,卷(期) 2021,(12) 所属期刊栏目 视觉检测与图像测量|Visual Inspection and Image Measurement
研究方向 页码范围 211-219
页数 9页 分类号 TP391.41|TH878
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J2108078
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
缺陷检测
YOLOv4
MobileNetv3
K-Means聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导