基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标跟踪是计算机视觉中重要的研究领域之一,大多跟踪算法不能有效学习适合于跟踪场景的特征限制了跟踪算法性能的提升.该文提出了一种基于空间和通道注意力机制的目标跟踪算法(CNNSCAM).该方法包括离线训练的表观模型和自适应更新的分类器层.在离线训练时,引入空间和通道注意力机制模块对原始特征进行重新标定,分别获得空间和通道权重,通过将权重归一化后加权到对应的原始特征上,以此挑选关键特征.在线跟踪时,首先训练全连接层和分类器层的网络参数,以及边界框回归.其次根据设定的阈值采集样本,每次迭代都选择分类器得分最高的负样本来微调网络层参数.在OTB2015数据集上的实验结果表明:相比其他主流的跟踪算法,该文所提算法获得了更好的跟踪精度,重叠成功率和误差成功率分别为67.6%,91.2%.
推荐文章
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
基于空间注意力机制的视觉多目标跟踪
多目标跟踪
空域注意力机制
交并比
数据关联
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于空间和通道注意力机制的目标跟踪方法
来源期刊 电子与信息学报 学科
关键词 目标跟踪 深度学习 空间注意力 通道注意力 在线学习
年,卷(期) 2021,(9) 所属期刊栏目 模式识别与智能信息处理|Pattern Recognition and Intelligent Information Processing
研究方向 页码范围 2569-2576
页数 8页 分类号 TN911.73|TP391.4
字数 语种 中文
DOI 10.11999/JEIT200687
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(6)
  • 参考文献(1)
  • 二级参考文献(5)
2019(7)
  • 参考文献(1)
  • 二级参考文献(6)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
深度学习
空间注意力
通道注意力
在线学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导