基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从数据中学习模糊系统是其智能建模的重要方法之一,针对目前模糊系统建模及优化方法对于学习后的模糊系统的规则数以及结构优化关注不足而影响了其精度和可解释性的问题,提出了一种结合模拟退火与基于支持度约简规则的模糊系统优化方法.该方法通过支持度约简系统冗余规则进而提高模糊系统的可解释性;同时利用模拟退火算法优化模糊系统的隶属度函数参数进一步提高模糊系统的精度.针对回归任务,与BP(Back Propagation)神经网络、径向基(Radial Basis Function,RBF)神经网络以及经典的模糊算法WM(Wang-Mendel)在不同领域的3个经典数据集上进行实验比较,实验结果表明:该算法在预测方面取得了更高的精度;与WM算法相比,所提算法中规则数明显减少,进一步提高了系统的可解释性.
推荐文章
模拟退火教学式优化算法
教学式优化算法
模拟退火算法
局部最优
组合优化
基于遗传模拟退火算法的模糊聚类方法
模拟退火(SA)
遗传算法(GA)
模糊聚类
基于模拟退火算法的差速器多目标优化设计
差速器
圆锥齿轮
模拟退火算法
优化
基于模拟退火高斯扰动的蝙蝠优化算法
蝙蝠算法
模拟退火
高斯扰动
仿真
优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合模拟退火与规则约简的模糊系统优化方法
来源期刊 计算机工程与应用 学科
关键词 模糊系统 模拟退火算法 支持度 冗余规则 可解释性
年,卷(期) 2021,(16) 所属期刊栏目 模式识别与人工智能|Pattern Recognition and Artificial Intelligence
研究方向 页码范围 142-150
页数 9页 分类号 TP391.41|TP273
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0064
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (10)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊系统
模拟退火算法
支持度
冗余规则
可解释性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导