基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
医学图像是疾病诊断的重要依据,医学图像分割通常是由医学专家手动完成,耗时长,分割准确程度受主观因素影响较大,非常依赖医生的经验.日益增加的阅片量,迫切需要一种自动分割方法来缓解医生的图像分割压力.
推荐文章
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
融合背景估计与U-Net的文档图像二值化算法
文档图像二值化
对比度增强
形态学闭操作
U型卷积神经网络
全局最优阈值处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 U-Net及其改进算法在医学图像分割中的研究进展
来源期刊 电子世界 学科
关键词
年,卷(期) 2021,(20) 所属期刊栏目 探索与观察
研究方向 页码范围 36-37
页数 2页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
电子世界
半月刊
1003-0522
11-2086/TN
大16开
北京市
2-892
1979
chi
出版文献量(篇)
36164
总下载数(次)
96
论文1v1指导