基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对与日俱增的隧道养护需求,为了节约时间与人力成本,提出基于卷积神经网络的公路隧道衬砌病害检测方法.利用自主研制的隧道智能快速检测车采集24条隧道衬砌的图像,构建超过20000张病害图像的高质量数据集.结合隧道衬砌病害的成因及特点,分别构建单阶段SSD模型和两阶段R-FCN模型在自制的数据集上训练,对检测结果进行对比分析,提出离线式隧道衬砌病害检测方案.试验结果表明,SSD模型的识别准确率为98%,总的平均精度均值(mAP)为72%,检测速度较快,适用于隧道的快速诊断.R-FCN模型的识别准确率为85%,总的mAP达到91%,检测精度较高,适用于隧道病害的后期处理.利用这2种检测模型均可以提升检测效率和精度.
推荐文章
基于深度学习的盾构隧道衬砌病害识别方法
盾构隧道
衬砌病害
深度学习
卷积神经网络
图像分类
基于深度学习的地铁隧道衬砌病害检测模型优化
地铁盾构隧道
裂缝
渗漏水
深度学习
病害检测
基于深度学习的盾构隧道衬砌病害识别方法
盾构隧道
衬砌病害
深度学习
卷积神经网络
图像分类
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的公路隧道衬砌病害识别方法
来源期刊 浙江大学学报(工学版) 学科 交通运输
关键词 深度学习 卷积神经网络 隧道衬砌 隧道病害检测 裂缝 渗漏水
年,卷(期) 2022,(1) 所属期刊栏目 土木工程、水利工程|Civil Engineering, Hydraulic Engineering
研究方向 页码范围 92-99
页数 8页 分类号 U456
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2022.01.010
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
隧道衬砌
隧道病害检测
裂缝
渗漏水
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导