基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
口服液压盖过程,会出现压盖不良等情况,瓶盖可能会出现划痕、刮花、表面卷曲、压盖破损等缺陷,为保证食品药品安全必须在出厂前进行检测.在基于深度学习的口服液瓶压盖缺陷检测的研究过程中,使用传统卷积神经网络对口服液压盖缺陷数据集进行训练,需要进行人工标注,效率较低.为有效解决上述问题,设计出一种无监督学习的深度卷积去噪自编码器网络模型用于口服液瓶压盖质量检测,并使用结构相似性SSIM作为损失函数.针对口服液压盖质量图像进行预处理,建立合格产品图像数据集,然后构建一种以卷积神经网络为基础,结合多层感知器的去噪自编码器网络模型.该模型仅以无缺陷产品图像进行训练并学习无缺陷产品特征,通过将缺陷图像重构为无缺陷图像,再与缺陷图像相减,获得包含缺陷信息的残差图.实验结果表明:该方法能够很好地识别口服液瓶压盖缺陷,准确率达到95.2%,且具有较好的泛化能力和鲁棒性.
推荐文章
基于去噪卷积自编码器的色织 衬衫裁片缺陷检测
色织衬衫裁片
缺陷检测
卷积自编码器
图像重构
基于深度自编码的局部增强属性网络表示学习
网络表示
深度自编码器
属性网络
局部增强网络表示
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
融合TDA的深度自编码网络车辆目标检测
交通监控
目标检测
点云区域生长分割
拓扑数据分析
层次聚类
深度自编码网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度自编码器网络的压盖缺陷检测
来源期刊 计算机技术与发展 学科 工学
关键词 压盖质量 缺陷检测 自编码器 神经网络 多层感知器
年,卷(期) 2022,(2) 所属期刊栏目 应用前沿与综合
研究方向 页码范围 143-147
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2022.02.023
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
压盖质量
缺陷检测
自编码器
神经网络
多层感知器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
论文1v1指导