基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 为辅助医生快速分辨新型冠状病毒肺炎(corona virus disease 2019,COVID-19)轻、重症患者,以便对症下药减轻医疗负担,提出一种基于结构图注意力网络的轻重症诊断算法.方法 基于胸部CT图像提取的特定特征以及肺段间的位置关系构建结构图,以肺部内不同肺段为节点,以提取特征为节点属性.采用图神经网络汇聚相邻节点特征,再利用池化层获取分别代表左肺叶和右肺叶特征的图表示.使用结构注意力机制计算左、右肺叶的感染情况对结果诊断的重要性,并依据重要性融合左、右肺叶图表示以得到最终图表示,最后执行分类任务.由于数据中存在明显的类别不平衡现象,采用Focal-Loss损失函数优化模型以减轻对分类结果的影响.结果 实验将所提算法分别与传统机器学习方法和流行的图神经网络算法做性能对比.在重症诊断的准确率上,本文算法相较于传统机器学习方法和图神经网络算法分别取得14.2%42.0%和3.6%4.8%的提升.在AUC(area under curve)指标上,本文算法相较于上述两种算法分别取得8.9%18.7%和3.1%3.6%的提升.除此之外,通过消融实验发现具有结构注意力机制的算法相较于未使用的算法在SPE(specificity)、SEN(sensitivity)和AUC 3个指标上分别取得了2.4%、1.4%和1.1%的提升;应用Focal-Loss损失函数的算法相较于未使用的算法提升了2.1%、1.1%和0.9%.结论 所提出的诊断模型综合了图神经网络以及结构注意力机制的优点,引入Focal-Loss损失函数,提升了困难样本的分类准确率,使诊断结果更加准确.
推荐文章
网络型课件《肿瘤超微结构图谱》的研制
网络型课件
制作软件
关键技术
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
面向系统结构图的数字仿真
数学模型
结构图
仿真
面向系统动态结构图的状态仿真
状态变量
动态结构图
数字仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结构图注意力网络的新冠肺炎轻重症诊断
来源期刊 中国图象图形学报 学科 工学
关键词 新冠肺炎(COVID-19)诊断 图神经网络(GNN) 结构注意力机制 拓扑结构图 图分类
年,卷(期) 2022,(3) 所属期刊栏目 计算机断层扫描图像|Computerd Tomography Image
研究方向 页码范围 750-761
页数 12页 分类号 TP183
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
新冠肺炎(COVID-19)诊断
图神经网络(GNN)
结构注意力机制
拓扑结构图
图分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导