基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法.通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器进行训练.当系统网架结构发生改变时,采用迁移成分分析法结合惯量中心频率偏移量对分类器进行更新.通过新英格兰10机39节点系统上的仿真结果表明所提方法比传统深度学习方法及迁移学习方法精度更高、泛化性能更强.当部分同步向量测量单元缺失以及数据中含有噪声时也能取得很好的效果.
推荐文章
基于稀疏自编码器和SVM的垃圾短信过滤
支撑矢量机
稀疏自编码器
短信
特征提取
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
融合降噪自编码器与BPSO的特征组合方法及其中医应用
降噪自编码器
二进制粒子群算法
非线性
中医药
基于去噪卷积自编码器的色织 衬衫裁片缺陷检测
色织衬衫裁片
缺陷检测
卷积自编码器
图像重构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 考虑惯量中心频率偏移的自编码器暂态稳定评估
来源期刊 电网技术 学科 工学
关键词 深度学习 电力系统 惯量中心频率 暂态稳定 堆叠稀疏自编码器
年,卷(期) 2022,(2) 所属期刊栏目 电力系统|Power System
研究方向 页码范围 662-670
页数 9页 分类号 TM721
字数 语种 中文
DOI 10.13335/j.1000-3673.pst.2021.0262
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
电力系统
惯量中心频率
暂态稳定
堆叠稀疏自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电网技术
月刊
1000-3673
11-2410/TM
大16开
北京清河小营东路15号中国电力科学研究院内
82-604
1957
chi
出版文献量(篇)
9975
总下载数(次)
39
论文1v1指导