基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
同时建图与定位(SLAM)是自动驾驶功能重要的组成部分,现有算法以激光或视觉惯性里程计为主,未充分利用多模态传感器各自的优势,对特征缺失的场景鲁棒性不足.针对此问题,本文中提出了一种采用激光雷达、摄像头和惯性测量单元(IMU)的多传感器紧耦合SLAM系统.首先它改善了激光雷达点云特征提取和平面拟合的方案,提升了利用点云对视觉特征点深度信息优化的效率和精度.其次提出的紧耦合状态估计框架通过在视觉惯性系统中直接添加激光雷达里程计约束,在不增加算法复杂度的前提下提升了系统的稳定性和精度.最后由粗到精的视觉-激光雷达耦合回环框架进一步降低了系统的长时累计漂移.在开源数据集KITTI上进行大量测试验证的结果表明,与其它常用的算法相比,所提出的算法具有较高的精度和环境适应能力.另外在基于自主搭建的自动驾驶汽车测试平台进行的实车试验还证明本算法可适应长时间大场景的工作环境.
推荐文章
基于多传感器信息融合技术的防盗报警系统
多传感器技术
防盗报警系统
数据融合
基于多传感器融合的压力测量系统设计
智能压力传感器
PC机
温度补偿
基于Rough集的多传感器融合技术
Rough集
传感器
信息融合
模糊神经网络
基于多传感器数据融合的火灾预警系统
D-S证据理论
多传感器
数据融合
火灾预警
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多传感器融合的紧耦合SLAM系统
来源期刊 汽车工程 学科
关键词 自动驾驶 状态估计 同时建图与定位 多传感器融合 回环检测
年,卷(期) 2022,(3) 所属期刊栏目
研究方向 页码范围 350-361
页数 12页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2022.03.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动驾驶
状态估计
同时建图与定位
多传感器融合
回环检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
论文1v1指导