基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的图像识别方法存在人工提取特征困难、识别耗时长和准确率低等问题,本研究以感染病害的番茄叶片和健康番茄叶片共10类图像为研究对象,提出了1种迁移学习和DenseNet卷积神经网络相结合的模型,实现了对番茄叶部病害的准确分类.首先将所有的图像数据进行预处理修改尺寸,对部分数量不均衡样本作随机变换;然后将DenseNet网络从ImageNet数据集上学习获得的先验知识应用到番茄病害图片数据集上,进而构建出基于迁移学习的深度卷积网络,经过微调训练得到番茄叶部病害识别模型.结果表明,该模型与AlexNet网络、VGG网络+迁移学习和MobileNet网络+迁移学习3种深度卷积模型相比,识别精度更高,测试准确率达到97.76%,实现了对10种番茄叶部图像的有效分类,为番茄等农作物病害的识别技术以及智慧农业的发展提供了新的思路与方法.
推荐文章
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于改进的卷积神经网络的道路井盖缺陷检测研究
井盖缺陷
卷积神经网络
激活函数
神经元
基于改进卷积神经网络的人体检测研究
行人检测
深度学习
卷积神经网络
复杂背景
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进DenseNet卷积神经网络的番茄叶片病害检测
来源期刊 江苏农业学报 学科 工学
关键词 图像识别 番茄 病害 迁移学习 DenseNet卷积神经网络
年,卷(期) 2022,(1) 所属期刊栏目 农业信息工程|AGRICULTURAL INFORMATION ENGINEERING
研究方向 页码范围 129-134
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1000-4440.2022.01.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像识别
番茄
病害
迁移学习
DenseNet卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业学报
双月刊
1000-4440
32-1213/S
大16开
南京市孝陵卫钟灵街50号省农科院内
28-113
1985
chi
出版文献量(篇)
3989
总下载数(次)
8
总被引数(次)
36498
相关基金
新疆维吾尔自治区自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
论文1v1指导