基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对Yolov3算法应用于人体检测中的准确率低,参数量、计算量和模型体积大难以在资源有限的嵌入式平台上实现等问题,提出了YOLOv3改进及其模型压缩算法.在YOLOv3中通过引入密集连接与多分支结构,增加网络宽度和多尺度感受野,加强特征重用,提高了模型的检测精度;对改进的YOLOv3通过联合优化权重损失函数和BN层缩放因子的L1正则项等方式进行通道剪枝,从而减小了参数量和计算量,模型体积得到了大幅压缩.实验结果表明,改进后YOLOv3算法的检测精度提升了6.01%,模型体积减小了38.46%;经过压缩后,模型的检测精度虽然降低了3.16%,但模型体积仅为原来的3.31%,只有4.77 MB.因此,通过改进和压缩后的YOLOv3仍然保持较高的检测精度,而且模型体积得到大幅度的压缩,为YOLOv3模型在嵌入式平台上实现人体检测提供了支撑.
推荐文章
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 用于人体检测的YOLOv3改进及压缩算法的研究
来源期刊 计算机工程与科学 学科 工学
关键词 YOLOv3 人体检测 密集连接结构 多分支结构 模型压缩
年,卷(期) 2022,(2) 所属期刊栏目 图形与图像
研究方向 页码范围 312-320
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2022.02.017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
YOLOv3
人体检测
密集连接结构
多分支结构
模型压缩
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
论文1v1指导