基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 破损图像修复是一项具有挑战性的任务,其目的是根据破损图像中已知内容对破损区域进行填充.许多基于深度学习的破损图像修复方法对大面积破损的图像修复效果欠佳,且对高分辨率破损图像修复的研究也较少.对此,本文提出基于卷积自编码生成式对抗网络(convolutional auto-encoder generative adversarial network,CAE-GAN)的修复方法.方法 通过训练生成器学习从高斯噪声到低维特征矩阵的映射关系,再将生成器生成的特征矩阵升维成高分辨率图像,搜索与待修复图像完好部分相似的生成图像,并将对应部分覆盖到破损图像上,实现高分辨率破损图像的修复.结果 通过将学习难度较大的映射关系进行拆分,降低了单个映射关系的学习难度,提升了模型训练效果,在4个数据集上对不同破损程度的512×512×3高分辨率破损图像进行修复,结果表明,本文方法成功预测了大面积缺失区域的信息.与CE(context-encoders)方法相比,本文方法在破损面积大的图像上的修复效果提升显著,峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)值最高分别提升了31.6% 和18.0%,与DCGAN(deep convolutional generative adversarial network)方法相比,本文方法修复的图像内容符合度更高,破损区域修复结果更加清晰,PSNR和SSIM值最高分别提升了24.4% 和50.0%.结论 本文方法更适用于大面积破损图像与高分辨率图像的修复工作.
推荐文章
基于卷积神经网络的高分辨率雷达目标识别
高分辨距离像
雷达目标识别
卷积神经网络
批归一化
支持向量机
多幅图像的高分辨率无缝快速拼接方法
多幅图像
高分辨率
无缝拼接
A-KAZE特征
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积自编码生成式对抗网络的高分辨率破损图像修复
来源期刊 中国图象图形学报 学科 工学
关键词 破损图像修复 高分辨率 生成式对抗网络(GAN) 大面积破损 深度学习
年,卷(期) 2022,(5) 所属期刊栏目 图像修复|Image inpainting
研究方向 页码范围 1645-1656
页数 12页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
破损图像修复
高分辨率
生成式对抗网络(GAN)
大面积破损
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导