钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机科学与探索期刊
\
Winograd快速卷积相关研究综述
Winograd快速卷积相关研究综述
作者:
童敢
黄立波
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
Winograd卷积
快速卷积算法
卷积神经网络(CNN)
卷积优化
摘要:
卷积神经网络(CNN)已经被广泛应用到各个领域并发挥了重要作用.卷积算子是卷积神经网络的基础组件,同时也是最耗时的部分.近年来,研究者提出了包括基于FFT和Winograd的若干种快速卷积算法.其中Winograd卷积因大幅减少了卷积中乘法操作且占用内存更小而迅速成为小卷积核的卷积算子上快速卷积实现的首选.但目前相关工作聚焦于算法的一般化、拓展和各类体系结构上的实现,还没有研究者对Winograd卷积算法作系统性的总结.为了给后续研究者提供详细的参考依据,对Winograd卷积引入以来的相关工作进行了总结.首先阐述了Winograd最小滤波算法及Winograd卷积的引入,介绍了Winograd卷积的一般化与拓展,并对比了现有实现之间的差异;从稀疏剪枝、低精度与量化、数值稳定性这三方面介绍了Winograd卷积的优化工作,并详细介绍了相关具体方法的优缺点;对各类体系结构上的实现和优化进行了分类总结,比较了各平台上实现可用的通用优化方法,并介绍了Winograd卷积的实际应用;最后对内容进行了简要总结,分析了现有研究的局限性,并对未来可能的方向进行了初步展望.
暂无资源
收藏
引用
分享
推荐文章
基于OpenMP的Winograd并行矩阵乘算法应用研究
分子动力学
矩阵乘
Winograd
并行计算
加速比
OpenMP
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于快速卷积方法实现广义频分复用系统的研究
快速卷积
广义频分复用
重叠因子
抽取因子
误符号率
峰均功率比
复杂度
卷积的一种快速算法分析
卷积
算法
多项式
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
Winograd快速卷积相关研究综述
来源期刊
计算机科学与探索
学科
工学
关键词
Winograd卷积
快速卷积算法
卷积神经网络(CNN)
卷积优化
年,卷(期)
2022,(5)
所属期刊栏目
综述·探索|Surveys and Frontiers
研究方向
页码范围
959-971
页数
13页
分类号
TP183
字数
语种
中文
DOI
10.3778/j.issn.1673-9418.2110036
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(0)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
2022(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
Winograd卷积
快速卷积算法
卷积神经网络(CNN)
卷积优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
主办单位:
华北计算技术研究所
出版周期:
月刊
ISSN:
1673-9418
CN:
11-5602/TP
开本:
大16开
出版地:
北京市海淀区北四环中路211号北京619信箱26分箱
邮发代号:
82-560
创刊时间:
2007
语种:
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于OpenMP的Winograd并行矩阵乘算法应用研究
2.
基于卷积神经网络的目标检测研究综述
3.
基于快速卷积方法实现广义频分复用系统的研究
4.
卷积的一种快速算法分析
5.
一种基于多项式变换的快速卷积算法
6.
基于卷积神经网络的图像检测识别算法综述
7.
基于Winograd稀疏算法的卷积神经网络加速器设计与研究
8.
一种分段卷积快速算法的设计与实现
9.
深度学习相关研究综述
10.
全卷积神经网络研究综述
11.
高容错(2,1,m)卷积码快速盲识别方法
12.
流密码快速相关攻击综述
13.
香椿种质资源与快速繁殖研究进展(综述)
14.
基于多级金字塔卷积神经网络的快速特征表示方法
15.
卷积神经网络的研究进展综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机科学与探索2022
计算机科学与探索2021
计算机科学与探索2020
计算机科学与探索2019
计算机科学与探索2018
计算机科学与探索2017
计算机科学与探索2016
计算机科学与探索2015
计算机科学与探索2014
计算机科学与探索2013
计算机科学与探索2012
计算机科学与探索2011
计算机科学与探索2010
计算机科学与探索2009
计算机科学与探索2008
计算机科学与探索2007
计算机科学与探索2022年第5期
计算机科学与探索2022年第4期
计算机科学与探索2022年第3期
计算机科学与探索2022年第2期
计算机科学与探索2022年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号