基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在电力能源使用中,多重外界因素影响着电力负荷总耗能量.当前已有技术仅限于对机组内部因素及数字型外界因素对电力负荷的影响进行测算,无法综合处理较复杂环境、人文等数字化处理较困难的影响因素,测算精准度受到制约.在预测电力负荷总量问题上,基于深度学习理论,搭建一种更精准的预测模型,利用数据降维(PCA)、数据清洗等方法使模型具有处理复杂影响因素的能力,并采用仿真分析技术将新模型与现存模型进行预测精准度对比.研究表明,新模型的预测水平较其余模型更良好.
推荐文章
基于残差修正的冬季天然气日负荷预测模型
天然气
负荷预测
误差累积
神经网络
残差修正
整体精度
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
组合深度残差网络手势识别
手势识别
残差网络
肤色模型
深度学习
迁移学习
人机交互
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度残差网络的电力负荷预测策略
来源期刊 电工技术 学科 工学
关键词 神经网络 负荷预测 数据降维 深度学习 电力系统
年,卷(期) 2022,(6) 所属期刊栏目 电力自动化|Power Automation
研究方向 页码范围 120-122
页数 3页 分类号 TM93
字数 语种 中文
DOI 10.19768/j.cnki.dgjs.2022.06.039
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
负荷预测
数据降维
深度学习
电力系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工技术
半月刊
1002-1388
50-1072/TM
32开
重庆市渝北区洪湖西路18号
78-61
1980
chi
出版文献量(篇)
12910
总下载数(次)
32
总被引数(次)
16080
论文1v1指导