基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了能够高效精准地对煤矿带式输送机上的煤量进行分级,提出了一种基于变分自编码器(VAE)的输送带煤量分级算法.首先为了解决真实场景图像往往存在许多噪声信息的问题,利用VAE对图像进行重构处理,使图像更加光滑以减少噪声信息对后续分级的干扰.然后为了提升输送带煤量的分级精度,利用卷积神经网络(CNN)对重构后的图像进行分级预测.实验结果表明,相对于对比方法,此该算法在各评价指标上均有提升,同时重构图像能够保留原始图像的关键信息.
推荐文章
基于条件变分自编码的密码攻击算法
条件变分自编码
密码猜测算法
密码攻击
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量
迁移学习
变分自编码器
标签映射
湿式球磨机负荷参数
过程控制
预测
实验验证
基于多重降噪自编码器模型的top-N推荐算法
预测精度
用户评分
加噪操作
多重降噪自编码器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变分自编码器的输送带煤量分级算法研究
来源期刊 煤矿机械 学科 工学
关键词 输送带煤量 VAE CNN
年,卷(期) 2022,(2) 所属期刊栏目 计算机应用|Computer Application
研究方向 页码范围 187-189
页数 3页 分类号 TP399
字数 语种 中文
DOI 10.13436/j.mkjx.202202059
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
输送带煤量
VAE
CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
论文1v1指导