基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对狭小空间中目标相互遮挡导致轻型检测网络存在大量漏检、分类错误等问题,基于YOLOv4-tiny提出一种自适应非极大抑制(adaptive non-maximum suppression,A-NMS)的多尺度检测方法.在骨干网络引入大尺度特征图优化策略和金字塔池化模型,增强遮挡目标显著区域特征;设计内嵌空间注意力的双路金字塔特征融合网络,提升浅层细节特征与高级语义信息的融合能力;提出区域目标密度与边界框中心距离因子相关联的动态NMS阈值设定方法,并在后处理阶段代替传统IoU-NMS算法,进一步减少漏检.实验结果表明,与YOLOv4-tiny算法相比,改进算法在公开数据集PASCAL VOC07+12和自制数据集上mAP值分别提高2.84个百分点和3.06个百分点,FPS保持在87.9,对遮挡目标的检测能力显著提升,满足移动端对狭小复杂场景实时检测的需求.
推荐文章
Tiny YOLOV3目标检测改进
目标检测
Tiny YOLOV3
深度可分离卷积
反残差块
多尺度预测
基于改进YOLOv5的轻量化航空目标检测方法
深度学习
目标检测
注意力
模型压缩
通道剪枝
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进YOLOv4-tiny网络的狭小空间目标检测方法
来源期刊 计算机工程与应用 学科 工学
关键词 狭小空间 遮挡目标检测 YOLOv4-tiny 空间注意力 多尺度特征融合 自适应非极大抑制
年,卷(期) 2022,(10) 所属期刊栏目 图形图像处理|Graphics and Image Processing
研究方向 页码范围 240-248
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2112-0593
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
狭小空间
遮挡目标检测
YOLOv4-tiny
空间注意力
多尺度特征融合
自适应非极大抑制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
论文1v1指导