针对现有的U-Net编解码结构网络的边缘模糊以及上下文信息提取能力弱等问题,提出了在编解码结构网络基础上融合反向注意力和金字塔模块的图像分割网络.网络以Res2Net50作为特征编码器提取特征,在编码器与解码器中引入尺度感知金字塔融合模块,加强网络对上下文信息的提取能力,然后在跳跃连接处加入反向注意力模块,用以提取边缘结构信息,最后使用特征拼接融合特征信息,提升网络模型分割性能.实验结果证明,改进的网络在Liver CT、Finding lungs in CT以及CHAOS数据集上的分割精度均有一定的提升,可以有效改善分割图像边缘模糊等问题.