原文服务方: 控制理论与应用       
摘要:
短期电力负荷存在非线性、波动性和影响因素多等特征,针对以上特征所导致的预测精度不足,本文提出一种基于相似日与双向长短时记忆神经网络(BiLSTM)组合的短期电力负荷预测模型.首先,剖析电力负荷的动态变化机理,基于相似日和灰色关联分析方法,构建负荷与特征融合数据集;其次,采用变分模态分解(VMD)方法将高波动、非线性的原始负荷数据分解为多个相对平稳的分量,并对各分量分别搭建BiLSTM预测模型;最后,采用鲸鱼算法(WOA)对模型的分解参数和相似日天数进行优化,减小模型的固有误差.以新英格兰某地区的实际数据进行仿真验证,所提模型的平均绝对百分比误差(MAPE)、平均绝对误差(MAE)和均方根误差(RMSE)分别为0.58%, 42,78,均优于对照模型,有效提升了负荷预测精度.
推荐文章
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于最大偏差相似性准则的BP神经网络短期电力负荷预测算法
需求响应
电力负荷预测
BP神经网络
最大偏差相似性准则
聚类算法
电力短期负荷预测相似日选取算法
短期负荷预测
相似日
气象因素
累积效应
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于相似日与BiLSTM组合的短期电力负荷预测
来源期刊 控制理论与应用 学科 工学
关键词 短期电力负荷预测;相似日;深度学习;鲸鱼优化算法;变分模态分解
年,卷(期) 2025,(12) 所属期刊栏目
研究方向 页码范围 116-126
页数 11页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2025(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期电力负荷预测;相似日;深度学习;鲸鱼优化算法;变分模态分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
1984-01-01
chi
出版文献量(篇)
4979
总下载数(次)
0
总被引数(次)
72515
论文1v1指导