联合相容分支定界算法(JCBB)存在"计算复杂度高"等缺点.为了优化JCBB算法在准确度和计算复杂度方面的性能,对它进行了三处改进:一是采用互斥准则和最优准则来提高关联的准确度;二是根据机器人的位姿和传感器的测量范围将数据关联限定在局部可能区域中;三是自适应地进行分批数据关联.仿真实验结果表明,优化JCBB算法(OJCBB)在保证准确度的同时大大降低了计算复杂度.Victoria Park Dataset实验表明,OJCBB算法的数据关联结果是可信的,而且OJCBB算法的计算效率远远高于JCBB算法.
在多机器人同时定位与地图创建(Simultaneous Localization and Mapping,SLAM)协同工作下,要求融合各机器人的特征子地图形成单一的公共地图,利用三角形相似性原理,实现SLAM定位中各机器人子地图的相互匹配.在机器人创建的地图中,依据路标位置相关的特征组成最小三角形,并通过三角形相似性原理对各机器人创建子地图进行相似性匹配,并记录相似三角形对应点匹配次数,最后彼此匹配次数最多的对应路标即为相关联的路标对.实验结果表明该方法是有效的,且鲁棒性强.