作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<正> 数形结合的解题方法,就是把数学问题中的数量关系和空间形式结合起来考虑的思维方法,其实质就是将抽象的数学语言与直观的图形结合起来,抽象思维和形象思维结合起来,使抽象问题具体化,复杂问题简单化,通过“数”和“形”的联系和转化,化难为易,从而使问题得到解决.一、“由形化数”.借助所给图形,仔细观察研究,揭示出图形中蕴含的数量关系,反映出事物的本质特征.
推荐文章
小学数学解题之"数""形"结合途径分析
小学数学
数形结合
解题
难点
数形结合思想在高考解题中的应用
数形结合思想
高考解题
应用
数形结合在解题中的应用
数形结合
解题思路
以形辅数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 数形结合的解题方法
来源期刊 中国考试:下半月 学科 教育
关键词 数形结合 解题方法 数学问题 数量关系 数学语言
年,卷(期) 2000,(11) 所属期刊栏目
研究方向 页码范围 30-33
页数 4页 分类号 G633.6
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 袁鑫 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数形结合
解题方法
数学问题
数量关系
数学语言
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国考试:下半月
月刊
1005-8427
11-3303/G4
北京市海淀区清华科技园立业大厦
出版文献量(篇)
1827
总下载数(次)
2
总被引数(次)
0
论文1v1指导