原文服务方: 信息与控制       
摘要:
提出一种基于径向基函数(RBF)神经网络的动力系统Lyapunov指数计算方法,设计了一个RBF网络结构,推导了基于RBF网络的Lyapunov指数计算公式.仿真实验表明,与其它现有方法相比,此方法计算精度较高,收敛速度较快,而且只需要较少的样本数据量.本方法能更准确、更快速地计算动力系统的Lya-punov指数.
推荐文章
线性动力系统的稳定性
线性动力系统
高度
稳定性
Smith标准型
基于TOPSIS的网络系统危险指数的计算方法
TOPSIS
CVSS
网络评估
危险指数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF网络的动力系统Lyapunov指数的计算方法
来源期刊 信息与控制 学科
关键词 Lyapunov指数 RBF神经网络 动力系统辨识 非线性系统
年,卷(期) 2004,(5) 所属期刊栏目 论文与报告
研究方向 页码范围 523-526
页数 4页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2004.05.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王正欧 天津大学系统工程研究所 91 2104 28.0 41.0
2 李冬梅 河北科技大学经济管理学院 11 80 7.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (8)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (25)
二级引证文献  (31)
1985(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(0)
  • 二级引证文献(2)
2011(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(9)
  • 引证文献(1)
  • 二级引证文献(8)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
Lyapunov指数
RBF神经网络
动力系统辨识
非线性系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
论文1v1指导