基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的强化学习算法应用到大状态、动作空间和任务复杂的马尔可夫决策过程问题时,存在收敛速度慢,训练时间长等问题.有效地学习和利用问题中包含的偏向信息可以加快学习速度,提高学习效率.在分析了偏向机制特点的基础上引入了隐偏向信息的概念,建立了一种基于偏向信息学习的强化学习模型,并提出了一种基于特征的改进SARSA(λ)算法.针对于推箱任务的实验表明,改进的算法明显提高了学习效率.
推荐文章
基于核方法的强化学习算法
强化学习
核方法
马尔科夫决策过程
Q-learning
mountiain car
基于个性的群体强化学习算法
个性
Agent
群体强化学习
RoboCup
基于深度强化学习的图像修复算法设计
图像修复
机器学习
深度强化学习
大数据
自相似
关联性
基于蚂蚁优化算法的分层强化学习
蚂蚁系统优化算法
强化学习
Option
瓶颈边
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐偏向信息学习的强化学习算法
来源期刊 南华大学学报(理工版) 学科 工学
关键词 强化学习 Markov决策过程 偏向 隐偏向信息 SARSA(λ)算法
年,卷(期) 2004,(2) 所属期刊栏目
研究方向 页码范围 10-16
页数 7页 分类号 TP18
字数 4509字 语种 中文
DOI 10.3969/j.issn.1673-0062.2004.02.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李国徽 华中科技大学计算机科学与技术学院 108 1100 18.0 29.0
2 李学勇 长沙大学数学与信息科学系 26 540 11.0 23.0
3 欧阳柳波 湖南大学软件学院 34 560 11.0 23.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (10)
参考文献  (7)
节点文献
引证文献  (6)
同被引文献  (12)
二级引证文献  (20)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(4)
  • 引证文献(3)
  • 二级引证文献(1)
2007(5)
  • 引证文献(2)
  • 二级引证文献(3)
2008(1)
  • 引证文献(0)
  • 二级引证文献(1)
2009(2)
  • 引证文献(0)
  • 二级引证文献(2)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
强化学习
Markov决策过程
偏向
隐偏向信息
SARSA(λ)算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南华大学学报(自然科学版)
双月刊
1673-0062
43-1442/N
大16开
湖南衡阳市常胜西路28号南华大学内
42-102
1987
chi
出版文献量(篇)
2087
总下载数(次)
5
总被引数(次)
9174
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导