基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在再生核空间W12(R)中,利用再生核的性质实现了既不用计算导数也不需要计算积分,而只用函数值就可以将函数展开成级数的一种方法,并且这种级数的部分和{fn(x)}作为逼近f(x)的序列,它的误差rn(x)=f(x)-fn(x)在空间范数意义下单调下降.
推荐文章
再生核空间W12(R)上的有界线性算子的最佳逼近问题
再生核空间
最佳逼近算子
最佳逼近偏差
一种运动车辆的阴影消除新方法
线间差分
阴影消除
彩色空间
空间三维物体二维投影的一种新方法
观察者
参考点
投影平面
Kantorovich算子在Orlicz空间中的逼近
奥尔里奇空间
推广的康托罗维奇型算子
正定理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 在W12(R)空间中函数逼近的一种新方法
来源期刊 高校应用数学学报A辑 学科 数学
关键词 再生核 函数逼近 函数展开
年,卷(期) 2004,(1) 所属期刊栏目
研究方向 页码范围 57-61
页数 5页 分类号 O174.41
字数 2185字 语种 中文
DOI 10.3969/j.issn.1000-4424.2004.01.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔明根 哈尔滨工业大学数学系 37 168 8.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (2)
二级引证文献  (1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
再生核
函数逼近
函数展开
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高校应用数学学报
季刊
1000-4424
33-1110/O
杭州市玉泉浙江大学数学系
chi
出版文献量(篇)
1518
总下载数(次)
0
总被引数(次)
9311
论文1v1指导