基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种用于滚动轴承类故障识别的混合模块化神经网络方法.该方法将用于检测故障的过滤网络模块与用于分类的网络模块相组合.首先将不同故障类别轴承的振动信号形成的特征向量经过滤模块,用改进的BP算法判断有无故障,然后经分类网络模块确定其所属故障类型.分类模块中的网络结构则通过对每类故障独立训练形成.实验结果证明,与单一神经网络学习及判断结果相比较,本文提出的方法准确率更高,实用性更强.
推荐文章
模块化神经网络容差模拟电路故障检测
模块化
神经网络
容差模拟
分类函数
基于模块化神经网络的动态联盟伙伴优化选择
敏捷制造
模块化神经网络
动态联盟
伙伴选择
BP神经网络
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于神经网络的车辆轴承故障诊断技术
铁道车辆
轴承
故障诊断
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模块化神经网络的轴承故障判断方法
来源期刊 昆明理工大学学报(理工版) 学科 工学
关键词 滚动轴承 神经网络 故障诊断
年,卷(期) 2004,(2) 所属期刊栏目 机电工程
研究方向 页码范围 23-26
页数 4页 分类号 TP183
字数 2893字 语种 中文
DOI 10.3969/j.issn.1007-855X.2004.02.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭宏 华南理工大学计算机学院 188 2058 24.0 34.0
2 涂淑琴 华南理工大学计算机学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (26)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (4)
二级引证文献  (7)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(2)
  • 引证文献(1)
  • 二级引证文献(1)
2008(3)
  • 引证文献(2)
  • 二级引证文献(1)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
滚动轴承
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
昆明理工大学学报(自然科学版)
双月刊
1007-855/X
53-1123/T
大16开
云南省昆明市呈贡区景明南路727号
64-79
1959
chi
出版文献量(篇)
3434
总下载数(次)
7
总被引数(次)
25009
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导