基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高炉铁水中的硅含量不仅是衡量产品质量的一个重要指标,而且反映了高炉能量利用的好坏.铁水硅含量的准确预测,能够指导高炉配料和高炉冶炼操作,实现降低铁水硅含量的目的.根据硅还原的机理从热力学和动力学方程出发,经推导得出了铁水中硅含量的预测模型,并结合高炉物料平衡及热平衡计算,编制成高炉铁水硅含量的预测系统.将实际高炉的原料条件及操作参数输入系统,得到了高炉铁水硅含量的预测值.该预测值与实测值相比,误差范围小,命中率高.从而表明该预测系统在实际运用中具有可靠性.
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
基于bootstrap的高炉铁水硅含量预测
高炉
bootstrap
预测区间
可信度
高炉铁水硅含量序列的支持向量机预测模型
自回归AR(p)模型
主成分分析
支持向量机
炉温预测
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高炉铁水硅含量预测系统
来源期刊 重庆大学学报(自然科学版) 学科 工学
关键词 硅含量 预测系统 高炉 热力学
年,卷(期) 2005,(3) 所属期刊栏目 电气·热能·材料工程
研究方向 页码范围 44-46
页数 3页 分类号 TF512
字数 2009字 语种 中文
DOI 10.3969/j.issn.1000-582X.2005.03.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张丙怀 重庆大学材料科学与工程学院 53 519 13.0 18.0
2 刁岳川 南京钢铁集团公司技术中心 15 72 6.0 8.0
3 廖东海 南京钢铁集团公司技术中心 7 18 3.0 4.0
4 王立芬 重庆大学材料科学与工程学院 3 10 2.0 3.0
5 阳海彬 重庆大学材料科学与工程学院 18 198 8.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (2)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (3)
二级引证文献  (9)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2005(1)
  • 引证文献(1)
  • 二级引证文献(0)
2006(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(1)
  • 引证文献(0)
  • 二级引证文献(1)
2009(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
硅含量
预测系统
高炉
热力学
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导