原文服务方: 信息与控制       
摘要:
提出了一种基于改进的动态独立分量分析(independent component analysis,ICA)和支持向量机(support vector machine,SVM)的高炉铁水硅含量预报模型建模方法.采用动态ICA方法对样本数据进行特征提取,消除生产工艺参数之间的相关性.在此基础上,再使用目前计算复杂性较小的最小二乘SVM算法建立高炉铁水硅含量预报的动态递推模型,并引入了遗传算法以优化模型性能.以某钢厂高炉实际生产数据进行了应用实验,并与现有的时间序列分析、人工神经网络和基本SVM建模方法进行了对比.实验统计结果表明,本文方法显著提高了铁水硅含量的预测命中率.
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
基于k-means++的高炉铁水硅含量数据优选方法
预测
动态建模
神经网络
高炉炼铁
铁水硅含量
数据优选
k-means++
深度学习
基于ICA-SVM的复杂化工过程集成故障诊断方法
独立成分分析
支持向量机
梯度算法
丁二烯精馏装置
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高炉铁水硅含量预报的ICA-SVM建模方法
来源期刊 信息与控制 学科
关键词 ICA SVM 硅含量预报
年,卷(期) 2008,(2) 所属期刊栏目 实际问题研讨
研究方向 页码范围 247-252
页数 6页 分类号 TP277
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2008.02.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴铁军 浙江大学工业控制研究所工业控制技术国家重点实验室 102 2261 22.0 44.0
2 郑俊华 浙江大学工业控制研究所工业控制技术国家重点实验室 1 8 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (52)
参考文献  (14)
节点文献
引证文献  (8)
同被引文献  (10)
二级引证文献  (8)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(2)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(4)
  • 参考文献(2)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(5)
  • 参考文献(4)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ICA
SVM
硅含量预报
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
论文1v1指导