基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对铁水硅含量无法直接在线检测的问题,本文提出了一种基于优化极限学习机(ELM)的高炉铁水硅含量预报方法.该方法利用复合差分进化算法(CoDE)的快速定位全局最优解的能力来优化极限学习机的输入权值和隐层节点阈值,在此基础上建立了基于复合差分进化算法优化极限学习机(CoDE-ELM)的高炉铁水硅含量预报模型.以某钢铁厂2650 m3的高炉为例,利用实际采集数据进行模型检验,结果表明,当绝对误差小于0.1时,铁水硅含量的预报命中率为89%,均方根误差为0.047,实际目标值序列与预报值序列的相关系数为0.851.所建模型的预报结果优于支持向量机(SVM)、前馈神经网络(BP-NN)、极限学习机以及差分优化极限学习机(DE-ELM),对高炉炉温的实际调控具有较好的指导意义.
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
基于改进差分进化算法优化极限学习机的短期负荷预测
短期负荷预测
极限学习机
改进差分进化算法
优化
预测精度
差分进化极限学习机城市燃气负荷预测
燃气负荷
差分进化
极限学习机
人工神经网络
隐含层节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于复合差分进化算法与极限学习机的高炉铁水硅含量预报
来源期刊 控制理论与应用 学科 工学
关键词 铁水硅含量 预报模型 复合差分 极限学习机
年,卷(期) 2016,(8) 所属期刊栏目 短文
研究方向 页码范围 1089-1095
页数 7页 分类号 TP273
字数 5992字 语种 中文
DOI 10.7641/CTA.2016.50696
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳春华 中南大学信息科学与工程学院 389 3229 27.0 37.0
2 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
3 蒋朝辉 中南大学信息科学与工程学院 34 240 10.0 13.0
4 尹菊萍 中南大学信息科学与工程学院 2 19 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (29)
参考文献  (16)
节点文献
引证文献  (11)
同被引文献  (55)
二级引证文献  (23)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(4)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(5)
  • 引证文献(2)
  • 二级引证文献(3)
2019(14)
  • 引证文献(2)
  • 二级引证文献(12)
2020(12)
  • 引证文献(4)
  • 二级引证文献(8)
研究主题发展历程
节点文献
铁水硅含量
预报模型
复合差分
极限学习机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
广州市五山华南理工大学内
46-11
1984
chi
出版文献量(篇)
4979
总下载数(次)
16
总被引数(次)
72515
论文1v1指导