基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
高炉铁水中的硫含量是描述铁水质量的一个重要指标.为了在出铁之前了解铁水中硫含量的高低,建立预测模型是必要的.本文利用遗传算法(GA)和BP神经网络构造了高炉铁水硫含量的预测分析模型,从某高炉选取117组数据进行学习和预测.运行结果表明,模型预测精度较高,当要求绝对误差为±3×10-6时,命中率可达61.54%;绝对误差为±4×10-6时,命中率可达84.69%.在此基础上,应用该模型回归分析了高炉风量、热风压力、富氧量、铁间料批数与铁水硫含量之间的相关关系,结果与高炉冶炼理论基本吻合,可为高炉生产提供一定的指导.
推荐文章
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
改进型EMD-Elman神经网络在铁水硅含量预测中的应用
硅含量
预测
多尺度
动态建模
经验模态分解
神经网络
基于群智能算法优化神经网络的网络安全事件分析
遗传算法
LMS算法
RBF神经网络
入侵识别
网络安全事件分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络对铁水硫含量的优化和分析
来源期刊 材料与冶金学报 学科 工学
关键词 BP神经网络 铁水硫含量 预测
年,卷(期) 2006,(2) 所属期刊栏目 冶金
研究方向 页码范围 86-89
页数 4页 分类号 TF512|O157.2
字数 1809字 语种 中文
DOI 10.3969/j.issn.1671-6620.2006.02.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张军红 鞍山科技大学材料学院 12 84 5.0 9.0
2 沈峰满 东北大学材料与冶金学院 150 1192 19.0 26.0
3 谢安国 鞍山科技大学材料学院 21 163 7.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
铁水硫含量
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
材料与冶金学报
季刊
1671-6620
21-1473/TF
大16开
沈阳市文化路东北大学114信箱
1982
chi
出版文献量(篇)
1355
总下载数(次)
3
总被引数(次)
8163
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导