基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高支持向量机的泛化能力,给出了一个鲁棒损失函数,利用它建立了鲁棒支持向量机,并利用对偶原理推导出其对偶优化问题的形式,在此基础上设计了局部梯度算法,在这种算法中每次迭代只改变两个优化变量的值.随后分析了算法的收敛性条件,给出了学习步长的选择依据,最后用一个仿真实例来说明所提出的支持向量机的学习性能,比标准支持向量机具有更好的鲁棒性.
推荐文章
基于减量学习的鲁棒稀疏最小二乘支持向量回归机
最小二乘支持向量回归机
鲁棒性
稀疏性
鲁棒'3σ'准则
留一误差
减量学习
一类非平坦函数的多核最小二乘支持向量机的鲁棒回归算法
多核最小二乘支持向量机
非平坦函数
谱系聚类
偏最小二乘回归
鲁棒性
一种鲁棒非平衡极速学习机算法
极速学习机
不平衡数据集
基于核的可能性模糊C-均值聚类
神经网络
一种在线向量机增强学习算法
在线
向量机
增强学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种鲁棒回归支持向量机及其学习算法
来源期刊 南京理工大学学报(自然科学版) 学科 工学
关键词 结构风险最小化 支持向量机 鲁棒损失函数 局部梯度法
年,卷(期) 2006,(3) 所属期刊栏目
研究方向 页码范围 311-314
页数 4页 分类号 TP183
字数 2415字 语种 中文
DOI 10.3969/j.issn.1005-9830.2006.03.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪晓东 浙江师范大学信息科学与工程学院 62 1198 16.0 33.0
2 张长江 浙江师范大学信息科学与工程学院 58 423 13.0 17.0
3 张浩然 浙江师范大学信息科学与工程学院 46 819 13.0 28.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (13)
同被引文献  (10)
二级引证文献  (8)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
结构风险最小化
支持向量机
鲁棒损失函数
局部梯度法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
相关基金
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导