原文服务方: 微电子学与计算机       
摘要:
为了在智能学习和改变规则的情况下,在线最小二乘法支持向量机可以高效地估计值函数,采用了一种基于最小二乘支持向量机的新算法,通过汽车过山地实例证明了在线最小二乘法支持向量机的优越性,验证了该方法的可行性和有效性,利用最小二乘支持向量机通过一系列线性方程求解,使得在线应用成为可能.
推荐文章
一种用于RBF神经网络的支持向量机与BP的混合学习算法
机器学习
支持向量机
神经网络
BP算法
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
一种快速加权支持向量机训练算法
加权支持向量机
工作集
目标函数
一种新的选择性支持向量机集成学习算法
泛化性度量
集成学习
负相关
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种在线向量机增强学习算法
来源期刊 微电子学与计算机 学科
关键词 在线 向量机 增强学习
年,卷(期) 2008,(11) 所属期刊栏目
研究方向 页码范围 94-96,100
页数 4页 分类号 TP274
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘斌 陕西科技大学电气与信息工程学院 53 113 5.0 9.0
2 王立梅 陕西科技大学电气与信息工程学院 14 99 5.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
在线
向量机
增强学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导