原文服务方: 信息与控制       
摘要:
针对支持向量机对时变的样本集采用单一模型建模困难的问题,提出了一种新的学习策略.首先,使用自组织映射(SOM)神经网络和k-means聚类算法对初始样本集合进行聚类.然后,针对每个聚类数据集合,通过最优加权组合不同核函数的支持向量回归模型建立最终的模型.实验表明,采用这种学习策略的建模精度要优于单一支持向量回归建模方法.
推荐文章
基于支持向量回归的光度配准算法
支持向量机
图像
配准
基于支持向量回归机和B样条网络回归曲线建模算法
支持向量机
支持向量回归
B样条网络
回归曲线模型
基于多项式光滑的支持向量回归机
支持向量机
光滑化方法
多项式光滑函数
拟牛顿法
基于支持向量回归的非线性系统辨识
支持向量回归
非线性系统辨识
贝叶斯证据框架
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类算法的支持向量回归建模的新策略
来源期刊 信息与控制 学科
关键词 自组织特征映射 k均值 聚类算法 加权 支持向量回归
年,卷(期) 2006,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 34-37,42
页数 5页 分类号 TP18
字数 语种 中文
DOI 10.3969/j.issn.1002-0411.2006.01.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 穆志纯 北京科技大学信息工程学院 140 1211 16.0 24.0
2 王玲 北京科技大学信息工程学院 49 475 10.0 20.0
3 郭辉 北京科技大学信息工程学院 9 294 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (6)
同被引文献  (5)
二级引证文献  (16)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(5)
  • 引证文献(1)
  • 二级引证文献(4)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
自组织特征映射
k均值
聚类算法
加权
支持向量回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
总被引数(次)
41289
论文1v1指导