基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了保证热力系统稳定运行,提高锅炉安全寿命,控制污染物,该文利用多模型思想,对煤种低位发热值进行初步辨识和精确辨识.初步辨识中,采用改进的K均值聚类算法,快速辨识出煤种类型;精确辨识中,利用初步辨识的结果优化发热量辨识模型,减少模型搜索范围,采用自动调节隐节点和参数的径向基函数(RBF)神经网络算法.仿真结果表明,该辨识方法的辨识误差在1.5%以内,具有良好的辨识精度,在速度上也优于单独的RBF辨识算法,可以应用于热力系统煤种发热量在线辨识.
推荐文章
基于RBF神经网络系统辨识研究
RBF神经网络
系统辨识
MATLAB
对比分析
基于改进型RBF神经网络辨识的PID控制
径向基函数
改进型RBF神经网络
PID控制
最近邻聚类算法
在线自整定
一类基于RBF神经网络的动态系统在线自适应辨识方法
神经网络
系统辨识
动态系统
自适应校正
基于小波神经网络的系统辨识方法
系统辨识
小波神经网络
函数逼近
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的热力系统煤种辨识方法
来源期刊 清华大学学报(自然科学版) 学科 工学
关键词 低位发热值 煤种辨识 径向基函数神经网络
年,卷(期) 2006,(8) 所属期刊栏目 热能工程
研究方向 页码范围 1430-1433
页数 4页 分类号 TK223.7
字数 3523字 语种 中文
DOI 10.3321/j.issn:1000-0054.2006.08.023
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (12)
同被引文献  (14)
二级引证文献  (10)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2008(3)
  • 引证文献(3)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(3)
  • 引证文献(2)
  • 二级引证文献(1)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(4)
  • 引证文献(2)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
低位发热值
煤种辨识
径向基函数神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报(自然科学版)
月刊
1000-0054
11-2223/N
大16开
北京市海淀区清华园清华大学
2-90
1915
chi
出版文献量(篇)
7846
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导