基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过分析分布式拒绝服务(DDoS)攻击的特征,提出了基于数据挖掘技术的网络入侵检测方法来检测DDoS攻击,针对数据挖掘中FP-growth算法不产生候选集的优势,对进行处理及分组后的网络数据进行频繁特征提取,根据DDoS攻击会使网络的流量数据发生变化的特点,来检测是否发生攻击事件.实验结果表明,当发生DDoS攻击后网络数据确实发生了巨大的变化, 通过对网络数据的特征提取,完全可以检测出DDoS攻击的发生.
推荐文章
基于Hadoop的FP-Growth关联规则并行改进算法
FP-Growth算法
Hadoop
数据分割
负载均衡
一种基于邻接表的改进FP-growth算法
数据挖掘
关联规则
邻接表
基于FP-growth算法的关联规则获取研究
关联规则
FP-growth算法
税负分析
基于FP-Growth改进算法的轮胎质量数据分析
工业大数据
质量分析
FP-Growth算法
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FP-Growth算法的DDoS检测
来源期刊 计算机研究与发展 学科 工学
关键词 DDoS 数据挖掘 FP-growth
年,卷(期) 2006,(z2) 所属期刊栏目 网络和通信安全
研究方向 页码范围 492-497
页数 6页 分类号 TP309
字数 4028字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 左万利 吉林大学计算机科学与技术学院 88 1273 20.0 31.0
2 彭涛 吉林大学计算机科学与技术学院 30 131 8.0 11.0
3 张长利 2 6 1.0 2.0
4 赫枫龄 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DDoS
数据挖掘
FP-growth
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
总被引数(次)
164870
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导