原文服务方: 微电子学与计算机       
摘要:
在因果图理论中,采用了图形化和直接因果强度来表达知识和因果关系,它克服了贝叶斯网的一些不足,已经发展成了一个能够处理离散变量和连续变量的混合模型.但是因果图的结构得由领域专家给出,这在实际中很难办到.文章中给出了如何利用已知数据集,寻找最有可能的因果图网络模型方法,并用启发式算法进行模型评估.
推荐文章
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 因果图网络结构学习算法研究
来源期刊 微电子学与计算机 学科
关键词 因果图 结构 机器学习
年,卷(期) 2006,(1) 所属期刊栏目
研究方向 页码范围 77-79,84
页数 4页 分类号 TP18
字数 语种 中文
DOI 10.3969/j.issn.1000-7180.2006.01.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张勤 重庆大学自动化学院 120 1115 17.0 26.0
2 王洪春 重庆大学自动化学院 49 322 9.0 16.0
4 石庆喜 重庆大学自动化学院 8 83 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (29)
参考文献  (5)
节点文献
引证文献  (8)
同被引文献  (2)
二级引证文献  (4)
1925(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(3)
  • 引证文献(2)
  • 二级引证文献(1)
2008(2)
  • 引证文献(0)
  • 二级引证文献(2)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
因果图
结构
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导