原文服务方: 计算机应用研究       
摘要:
贝叶斯网络是一种有效的不确定性知识表达和推理工具,在数据挖掘等领域得到了较好的应用,而结构学习是其重要研究内容之一.经过二十多年的发展,已经出现了一些比较成熟的贝叶斯网络结构学习算法,对迄今为止的贝叶斯网络结构学习方法进行了综述.现阶段获得的用于结构学习的观测数据都比较复杂,这些数据分为完备数据和不完备数据两种类型.针对完备数据,分别从基于依赖统计分析的方法、基于评分搜索的方法和混合搜索方法三个方面对已有的算法进行分析.对于不完备数据,给出了数据不完备情况下网络结构的学习框架.在此基础上归纳总结了贝叶斯网络结构学习各个方向的研究进展,给出了贝叶斯网络结构学习未来可能的研究方向.
推荐文章
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯网络结构学习综述
来源期刊 计算机应用研究 学科
关键词 贝叶斯网络 结构学习 数据 统计分析 搜索
年,卷(期) 2015,(3) 所属期刊栏目 综述评论
研究方向 页码范围 641-646
页数 6页 分类号 TP181
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2015.03.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张军 国防科学技术大学信息系统与管理学院 68 591 12.0 22.0
2 李硕豪 国防科学技术大学信息系统与管理学院 4 110 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (54)
参考文献  (29)
节点文献
引证文献  (102)
同被引文献  (302)
二级引证文献  (92)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(5)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(5)
  • 二级引证文献(0)
2015(5)
  • 引证文献(5)
  • 二级引证文献(0)
2016(12)
  • 引证文献(12)
  • 二级引证文献(0)
2017(23)
  • 引证文献(19)
  • 二级引证文献(4)
2018(52)
  • 引证文献(33)
  • 二级引证文献(19)
2019(64)
  • 引证文献(28)
  • 二级引证文献(36)
2020(38)
  • 引证文献(5)
  • 二级引证文献(33)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
数据
统计分析
搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导