原文服务方: 西安交通大学学报       
摘要:
针对贝叶斯网络结构学习问题,提出了一种约束蚁群优化算法.该算法根据贝叶斯得分的局部一致性原理设计了一种增边规则,并且将此规则引入蚁群算法的框架中,从而实现了在搜索过程中利用启发式信息动态缩减搜索空间、同时减少运行时间的目的.此外,还从理论上证明了增边规则的正确性,而且从实验角度讨论了约束蚁群优化算法的参数敏感性.实验结果表明,在解决较大规模的贝叶斯网络结构学习问题时,约束蚁群优化算法在保证求解精度的条件下比蚁群优化算法的运行时间减少40%以上.
推荐文章
一类基于蚁群优化的贝叶斯置信网结构学习策略及性能分析
优化算法
蚁群优化算法
贝叶斯置信网
结构学习
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用约束蚁群优化的贝叶斯网结构学习算法
来源期刊 西安交通大学学报 学科
关键词 贝叶斯网络 约束蚁群优化算法 增边规则
年,卷(期) 2011,(8) 所属期刊栏目
研究方向 页码范围 54-61
页数 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑建国 东华大学旭日工商管理学院 155 1539 19.0 33.0
2 张超群 东华大学旭日工商管理学院 7 447 6.0 7.0
3 王翔 东华大学旭日工商管理学院 15 258 7.0 15.0
4 阎瑞霞 东华大学旭日工商管理学院 5 78 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (33)
参考文献  (12)
节点文献
引证文献  (7)
同被引文献  (18)
二级引证文献  (7)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
贝叶斯网络
约束蚁群优化算法
增边规则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导