基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
磷含量是描述钢液质量的一个重要的含量.结合遗传算法(GA)和误差反馈型神经网络(BP),建立了优化的GA-BP神经网络预测模型,预测转炉炼钢过程钢液终点磷含量.对现场收集的数据进行仿真学习,结果表明,该预测模型收敛速度快,具有较高的预测精度,平均绝对误差可达到0.002 7%.随着训练样本的增加和模型结构的进一步优化和完善,将具有很好的应用前景.
推荐文章
基于BP神经网络的高炉铁水硅含量预测模型研究
铁水硅含量
BP神经网络
预测模型
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
基于BP神经网络对NMR的预测模型
1H NMR和13C NMR
神经网络
BP算法
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的钢液终点磷含量预测模型
来源期刊 鞍山科技大学学报 学科 工学
关键词 遗传算法 BP神经网络 磷含量 预测
年,卷(期) 2007,(2) 所属期刊栏目
研究方向 页码范围 128-130,135
页数 4页 分类号 TF703.8
字数 2058字 语种 中文
DOI 10.3969/j.issn.1674-1048.2007.02.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张军红 辽宁科技大学材料科学与工程学院 32 84 5.0 7.0
2 李旭 辽宁科技大学材料科学与工程学院 6 14 2.0 3.0
3 徐辉 辽宁科技大学材料科学与工程学院 1 5 1.0 1.0
4 苏小利 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (8)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (12)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(2)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遗传算法
BP神经网络
磷含量
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁科技大学学报
双月刊
1674-1048
21-1555/TF
大16开
辽宁省鞍山市高新技术产业开发区千山路185号
1979
chi
出版文献量(篇)
2893
总下载数(次)
6
总被引数(次)
9608
论文1v1指导