基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于聚类的支持向量机增量学习算法.先用最近邻聚类算法将训练集分成具有若干个聚类子集,每一子集用支持向量机进行训练得出支持向量集;对于新增数据首先聚类到相应的子集,然后计算其与聚类集内的支持向量之间的距离,给每个训练样本赋以适当的权重;而后再建立预估模型.此算法通过钢材力学性能预报建模的工业实例研究,结果表明:与标准的支持向量回归算法相比,此算法在建模过程中不仅支持向量个数明显减少,而且模型的精度也有所提高.
推荐文章
基于支持向量机的增量学习算法
结构风险最小化
支持向量
增量学习
基于一种混合核函数的支持向量机聚类
SVM
混合核函数
加权多宽度高斯核
支持向量聚类
一种基于聚类核的半监督支持向量机分类方法
聚类核
聚类假设
半监督支持向量机
分类
一种基于网格的增量聚类算法
增量
聚类
网格
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于聚类的支持向量机增量学习算法
来源期刊 北京科技大学学报 学科 工学
关键词 支持向量机 支持向量回归 聚类 增量学习
年,卷(期) 2007,(8) 所属期刊栏目 控制与决策
研究方向 页码范围 855-858
页数 4页 分类号 TP301.5|TG142.1
字数 3693字 语种 中文
DOI 10.3321/j.issn:1001-053x.2007.08.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 穆志纯 北京科技大学信息工程学院 140 1211 16.0 24.0
2 王玲 北京科技大学信息工程学院 49 475 10.0 20.0
3 郭辉 北京科技大学信息工程学院 9 294 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (78)
参考文献  (2)
节点文献
引证文献  (15)
同被引文献  (13)
二级引证文献  (6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(3)
  • 引证文献(3)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(4)
  • 引证文献(4)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(4)
  • 引证文献(3)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
支持向量回归
聚类
增量学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程科学学报
月刊
2095-9389
10-1297/TF
大16开
北京海淀区学院路30号
1955
chi
出版文献量(篇)
4988
总下载数(次)
18
总被引数(次)
47371
相关基金
国家科技攻关计划
英文译名:National Key Technology R&D Program
官方网址:http://gongguan.jhgl.org/
项目类型:重大项目
学科类型:信息
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导