基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于聚类分析在数据挖掘中具有重要的作用,针对聚类分析中聚类数确定难的问题,深入研究了聚类准则的选择和曲线特性,提出了一种基于SOFM神经网络的结构自适应聚类神经网络,其特点是能够自动确定最佳的聚类数.基于实际营销数据,采用结构自适应聚类神经网络技术实现了用户用电量时间特征分析,所得结论对于电价的针对性的调整以及合理地安排电力生产具有重要的参考价值.
推荐文章
基于ABC-BP神经网络的用电量预测研究
人工蜂群算法
BP神经网络
用电量预测
预测算法
基于电能替代背景下的新疆用电量预测研究
电能替代
用电量预测
最优组合预测模型
基于自适应果蝇算法的神经网络结构训练
果蝇优化算法
神经网络
自适应步长
模式分类
基于聚类分析和神经网络的时间序列预测方法
聚类
时间序列
预测
径向基
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于结构自适应神经网络用电量时间特征的聚类分析
来源期刊 重庆大学学报(自然科学版) 学科 工学
关键词 聚类分析 最优聚类数 人工神经网络 用电量时间特征
年,卷(期) 2007,(8) 所属期刊栏目 通信工程·电气工程·自动化
研究方向 页码范围 44-48
页数 5页 分类号 TM715
字数 4567字 语种 中文
DOI 10.3969/j.issn.1000-582X.2007.08.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈刚 重庆大学电气工程学院高电压与电工新技术教育部重点实验室 113 1636 21.0 36.0
2 袁忠军 广西水利电力职业技术学院电力工程系 7 24 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (4)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (18)
二级引证文献  (6)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(3)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类分析
最优聚类数
人工神经网络
用电量时间特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
相关基金
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
论文1v1指导