原文服务方: 微电子学与计算机       
摘要:
针对模式分类问题 ,提出基于连接结构的自适应果蝇优化算法(SFOA) ,用于同时训练神经网络结构和权值 .新算法采用基于连接结构的等长个体编码 ,后期映射为不同的网络结构 ;在嗅觉搜索阶段采用自适应步长 ,实现全局与局部搜索能力的平衡 .最后通过3个经典的模式分类数据库测试其性能 ,结果表明 :新算法实现简单 ,时间代价小 ,有效地删除冗余连接 ,提高了神经网络的训练效率及分类能力 .
推荐文章
基于面向对象自适应粒子群算法的神经网络训练
神经网络
粒子群优化算法
面向对象方法
拓扑结构优化
基于回归神经网络自适应快速BP算法
回归神经网络
BP算法
仿真
收敛速度
基于ROLS算法的递归RBF神经网络结构设计
神经网络
结构设计
算法
奇异值分解
动态建模
基于Pareto的神经网络结构集成优化方法
结构优化
进化计算
Pareto最优
网络集成
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应果蝇算法的神经网络结构训练
来源期刊 微电子学与计算机 学科
关键词 果蝇优化算法 神经网络 自适应步长 模式分类
年,卷(期) 2016,(1) 所属期刊栏目
研究方向 页码范围 15-18
页数 4页 分类号 TP183
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李国勇 太原理工大学信息工程学院 59 435 11.0 18.0
2 霍慧慧 太原理工大学信息工程学院 2 17 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (261)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (21)
二级引证文献  (6)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
果蝇优化算法
神经网络
自适应步长
模式分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导