基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以加热炉控制系统为研究对象,提出了一种基于遗传算法改进的BP网络优化PID控制参数方法,并与经典的临界比例度—Ziegler-Nichols方法进行比较。仿真结果表明该算法具有较好的控制效果。
推荐文章
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
改进遗传算法优化BP神经网络的语音情感识别
遗传算法
反向传播神经网络
语音情感识别
自适应
优化
基于遗传算法优化BP神经网络的高炉喷煤优化
高炉炼铁
喷煤优化
遗传算法
BP神经网络
基于遗传算法的加热炉支管平衡控制
预测控制
免疫遗传算法
加热炉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法改进的BP神经网络加热炉控制系统参数优化
来源期刊 计算机与信息技术 学科 工学
关键词 PID控制 BP神经网络 遗传算法 参数优化
年,卷(期) 2007,(9) 所属期刊栏目
研究方向 页码范围 5-6
页数 2页 分类号 TP183
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PID控制
BP神经网络
遗传算法
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与信息技术
月刊
大16开
1993
chi
出版文献量(篇)
2343
总下载数(次)
19
总被引数(次)
8817
论文1v1指导