基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着信息技术的发展,对人机交互能力的要求不断提高,情感信息处理已成为提高人机交互能力的一个重要课题.本文提出了一种汉语语音情感分类方法,主要研究了4种基本的人类情感:高兴、愤怒、恐惧、悲伤.从汉语语音信号中提取了能量、基频、语速等特征,利用支持向量机方法识别,取得了43.7%的平均识别率.
推荐文章
基于多级SVM分类的语音情感识别算法
语音情感识别
支持向量机
多级分类
主成分分析
基于两种GMM-UBM多维概率输出的SVM语音情感识别
语音情感识别
特征向量同维GMM-UBM多维概率输出
GMM阶数同维GMM-UBM多维概率输出
支持向量机(SVM)
基于情感特征分类的语音情感识别研究
语音情感识别
情感特征分类
改进D-S证据理论
证据信任度信息熵
动态先验权重
数据融合
基于NAQ的语音情感识别研究
迭代自适应逆滤波
归一化振幅商
F-ratio准则
混合高斯模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVM的汉语语音情感识别研究
来源期刊 电子测量技术 学科 工学
关键词 情感识别 语音信号 支持向量机
年,卷(期) 2007,(3) 所属期刊栏目 研究设计
研究方向 页码范围 20-21,56
页数 3页 分类号 TN912
字数 2124字 语种 中文
DOI 10.3969/j.issn.1002-7300.2007.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王成儒 燕山大学信息科学与工程学院 121 995 16.0 24.0
2 芦涛 燕山大学信息科学与工程学院 1 11 1.0 1.0
3 韩笑蕾 燕山大学信息科学与工程学院 2 16 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (17)
二级引证文献  (11)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(4)
  • 引证文献(3)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(8)
  • 引证文献(4)
  • 二级引证文献(4)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
情感识别
语音信号
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
论文1v1指导