基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对信用风险、信用评分进行了分析,在综合分析国内外企业信用评分指标体系的基础上,结合我国企业信用评分的特点,建立了适合我国企业信用评价的指标体系.结合国内外相关研究的现状与进展,及信用评分本身所具有的特点,建立了基于径向基函数神经网络的信用评分模型,利用现有数据分别进行判别和分析,研究其计算结果与实际情况的差距,然后使用改进的RBFNN学习算法,对径向基函数神经网络进行了学习训练,得到了令人满意的评价结果.利用该模型建立的评分系统具有进一步研究和推广应用的价值.
推荐文章
基于径向基函数神经网络的地下水数值模拟模型的替代模型研究
替代模型
径向基函数神经网络
拉丁超立方抽样
金泉工业园区
基于径向基函数神经网络的智能嗅觉系统
智能嗅觉系统
径向基函数网络
气体传感器阵列
选择性
用径向基函数神经网络模型预报感潮河段洪水位
感潮河段
水位预报
径向基函数
人工神经网络
径向基函数神经网络的再学习算法及其应用
径向基函数神经网络
再学习算法
训练样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于径向基函数神经网络的信用评分模型研究
来源期刊 计算机技术与发展 学科 工学
关键词 径向基函数 神经网络 信用评分 指标体系
年,卷(期) 2007,(9) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 11-14
页数 4页 分类号 TP273
字数 3374字 语种 中文
DOI 10.3969/j.issn.1673-629X.2007.09.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘树安 东北大学系统工程研究所 15 185 7.0 13.0
2 高国平 东北大学系统工程研究所 1 13 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (56)
参考文献  (5)
节点文献
引证文献  (13)
同被引文献  (16)
二级引证文献  (28)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(6)
  • 引证文献(2)
  • 二级引证文献(4)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(7)
  • 引证文献(1)
  • 二级引证文献(6)
2017(6)
  • 引证文献(1)
  • 二级引证文献(5)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
径向基函数
神经网络
信用评分
指标体系
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导